Exploring Möbius: case studies from the University of Birmingham

Tim Jackson, Jon Watkins and Nicola Wilkin
Michael Clark, Matthew Metson, Tim Johnson, Matthew Lavelle, Rebecca Thomas, Russell Davies, Thomas Davies, Laura Murgatroyd, Harry Cooke, Giovanni Armando, and George McArdle
Contents

• Motivation – what are our needs?
• Online learning environment
• How we use Möbius
• Analysis
• Future work
Motivation

Discover through analysis
Link theory to practical
Utilise mathematical reasoning

Enhance engagement with course
Encourage independent learning
Efficient summative assessment
Effective formative assessment

Maple T.A. and Möbius User Summit
© 2017 Maplesoft, a division of Waterloo Maple Inc. A CYBERNET group company
Student starting point

- A-level at least AAB or equivalent
- All have A-level standard mathematics
- Some have done no science since age 16
- Some have electronics experience
- GCSE Physics contains little electromagnetism and electric circuits
- Many are used to online learning

- Students like support for their learning
- Students like flexibility for when they do private study
- Students like clarity in instructions and deadlines
- Students like connections between parts of courses
- Students say they will spend up to 15 minutes on pre-session activities
Student starting point

- A-level at least AAB or equivalent
- All have A-level standard mathematics
- Some have done no science since age 16
- Some have electronics experience
- GCSE Physics contains little electromagnetism and electric circuits

- Many are used to online learning
- Students like support for their learning
- Students like flexibility for when they do private study
- Students like clarity in instructions and deadlines
- Students like connections between parts of courses
- Students say they will spend up to 15 minutes on pre-session activities
Online learning environment

- CANVAS
- Provides:
 - Reading lists
 - Programme
 - Gradebook
 - Videos of lectures
 - Answers
 - Discussions
 - Access to quizzes
- Plug in third-party software
Engagement with video content

![Image of a bar chart showing views by day with labels for lecture and exam.]
Engagement with video content

Revision lecture - 1 hour long

Average minutes viewed

Number of students

Average minutes viewed

Total minutes viewed

Number of students

Total minutes viewed

Revision lecture - 1 hour long

Number of students

Total minutes viewed

Maple T.A. and Möbius User Summit

© 2017 Maplesoft, a division of Waterloo Maple Inc. A CYBERNET group company
Engagement with video content
Engagement with video content

Standard lecture - 2 hours long

<table>
<thead>
<tr>
<th>Number of students</th>
<th>Average minutes viewed</th>
<th>Total minutes viewed</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>6.0</td>
<td>12.5</td>
</tr>
<tr>
<td>12.0</td>
<td>12.0</td>
<td>24.0</td>
</tr>
<tr>
<td>18.0</td>
<td>18.0</td>
<td>30.0</td>
</tr>
<tr>
<td>24.0</td>
<td>24.0</td>
<td>36.0</td>
</tr>
<tr>
<td>30.0</td>
<td>30.0</td>
<td>42.0</td>
</tr>
<tr>
<td>36.0</td>
<td>36.0</td>
<td>48.0</td>
</tr>
<tr>
<td>42.0</td>
<td>42.0</td>
<td>54.0</td>
</tr>
<tr>
<td>48.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Engagement with video content

![View By Week Chart]

Maple T.A. and Möbius User Summit

© 2017 Maplesoft, a division of Waterloo Maple Inc. A CYBERNET group company
Engagement with video content

Standard lecture - 2 hours long

- Average minutes viewed
- Total minutes viewed
What do we learn?

• Students review material close to key event
• Students use videos as part of revision
• The average minutes per view varies a lot

• We don’t know anything about the value of content
• We don’t know anything about student activity
• We have no data on the learning process
Incorporating Möbius

- Videos and reading material in Canvas
- Formative pre-lab assessments in Möbius linked to Canvas
- Summative post-lab assessments in Möbius accessed via Canvas
 One after each of the first two labs
 One at the end of term for all five labs

- Ultimately we want to:
 Enable students to be prepared
 Encourage students to interact with the content
 Evaluate the learning process
Incorporating Möbius

<table>
<thead>
<tr>
<th>Pre Lab 2 Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Waveform</td>
</tr>
<tr>
<td>Direct Current</td>
</tr>
<tr>
<td>Alternating</td>
</tr>
<tr>
<td>Voltage</td>
</tr>
<tr>
<td>Capacitor</td>
</tr>
<tr>
<td>Reactance</td>
</tr>
</tbody>
</table>

An alternating function or AC waveform is defined as one which varies in both magnitude and direction with respect to time, making it a "bi-directional" waveform, as opposed to the DC voltage source which is uni-directional. An AC waveform can represent either a power source or a signal source with the shape of an AC waveform generally following that of a mathematical sinusoid as defined by

\[V(t) = V_{peak} \sin(2\pi f t) \]

where \(V_{peak} \) is the amplitude of the AC waveform, \(f \) is the frequency in Hz (cycles per second), and \(t \) is the time in seconds.

The sinusoidal waveforms or sine waves are one of the most important AC waveforms used in Electrical Engineering.

![AC Waveform Diagram]
Incorporating quizzes

Quick and easy implementation to test integration, student participation, minimal coding requirement
Engaging content

Quick and easy implementation to test integration, student participation, minimal coding requirement
End of term post lab quiz

<table>
<thead>
<tr>
<th>Question</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Root mean square values</td>
</tr>
<tr>
<td>2</td>
<td>Use of oscilloscope</td>
</tr>
<tr>
<td>3</td>
<td>Analysis of a circuit diagram</td>
</tr>
<tr>
<td>4</td>
<td>Use of oscilloscope</td>
</tr>
<tr>
<td>5</td>
<td>Power in electric circuits</td>
</tr>
<tr>
<td>6</td>
<td>Calculations based on lab experiment 3 – Wheatstone Bridge</td>
</tr>
<tr>
<td>7</td>
<td>Critique of lab experiment 4 – power dissipated</td>
</tr>
<tr>
<td>8</td>
<td>Critique of lab experiment 4 – experimental design</td>
</tr>
<tr>
<td>9</td>
<td>Understanding of lab experiment 5 – circuit models</td>
</tr>
<tr>
<td>10</td>
<td>Understanding of lab experiment 5 – component characteristics</td>
</tr>
</tbody>
</table>
Analysis

• What is the time profile of student engagement leading up to the assessment deadline
• Did students revisit after the deadline?
• What is the fraction of class completing each assignment
• What proportion of students answered each question correctly?
• What proportion of students in the top quartile answered the question correctly?
• What proportion of students in the bottom quartile answered the question correctly?
• Does re-attempting quizzes lead to improvements in scores?

Audit/Benchmark/Evaluate
Engagement

- Quizzes used more than the lecture recordings
- Engagement with pre-lab materials was high (nearly 80%)
- Engagement with summative quizzes higher than formative quizzes
What fraction of the class engaged?

- Fraction of class completing assignment 3, end of term quiz
 84% completion
 Median of 9 attempts per student

- Fraction of class completing assignment 2, post lab summative
 96% completion
 13 attempts per student

- Fraction of class completing assignment 2, pre-lab formative quiz
 78% completion
 8 attempts per student
Benchmark against other assessments

Comparison of Quiz 3 and Final module marks

Post lab quiz 3 mark

Final module mark (%)
Benchmark against other assessments

Correlation between all coursework and final module mark

Coursework mark (%) vs. Final module mark (%)
Facility and discrimination of quiz questions

% of students in a quartile picking each answer

Marks range (25% blocks)

- Answer A (Correct)
- Answer B
- Answer C
- not answered
Evaluation – usability, students and staff

- Students used the formative and summative assessments
- Students were better prepared for labs than in previous years
- Integration with online environment worked for students

- Sustainability – we are reliant on coding expertise – need “scripts” to extract numerical data
- Integration – different systems in University for collecting data
Next steps

• Make better use of the power of Möbius resources
• Further reduce marking load on staff
• Replace many assessments with better assessments
• Make marking more equitable and more transparent

Thank you.
Any questions?
The circuit inside the box is shown in figure 2.

Figure 2: The circuit diagram

To calculate the Thevenin's equivalent voltage you see that \(V_{Th} \) the output voltage is \((\text{Click for List}) \).

\[V_{Th} = \text{Number} \quad \text{Units} \]

To calculate the Norton's equivalent current you see that \(I_{N} \) causes \((\text{Click for List}) \) and \((\text{Click for List}) \).

Then the current is \((\text{Click for List}) \).

\[I_{N} = \text{Number} \quad \text{Units} \]

Match the Thevenin equivalent voltage, \(V_{Th} \), the Norton equivalent current, \(I_{N} \), and the equivalent resistance, \(R_{eq} \), to their corresponding representation on the graph.
5. For the future

- How do we determine effectiveness in aiding learning?

 Define “effectiveness in aiding learning”

 Implementation

- Which tools are best suited to particular jobs?

 Formative and summative assessment
 Marking lab books
 Simple quizzes for shallow problems
 Exploration of deeper problems

Thank you – any questions?